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Abstract

Compressible stability of growing boundary layers is studied by numerically

solving the partial differential equations under a parabolizing approximation. The

resulting parabolized stability equations (PSE) account for non-parallel as well as

nonlinear effects. Evolution of disturbances in compressible flat-plate boundary

layers are studied for freestream Mach numbers ranging from 0 to 4.5. Results indi-

cate that the effect of boundary-layer growth is important for linear disturbances.

Nonlinear calculations are performed for various Mach numbers. Two-dimensional

nonlinear results using the PSE approach agree very well with those from direct nu-

merical simulations using the full Navier-Stokes equations while the required com-

putational time is less by an order of magnitude. Spatial simulations using PSE

have been carried out for both the fundamental and subhaxmonic type breakdown

for a Mach 1.6 boundary layer. The promising results obtained in this study show

that the PSE method is a powerful tool for studying boundary-layer instabilities

and for predicting transition over a wide range of Mach numbers.
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I. Introduction

The subject of compressible boundary-layer stability has attracted a great deal

of interest in the past few years due to its importance in understanding the on-

set of transition in high-speed flows and providing some theoretical background

for laminar flow control (LFC) techniques (Malik, 1990a). Most investigations of

compressible linear stability (e.g., Mack, 1969, 1984) have employed what is known

as the "quasi-parallel" approach whereby the growth of the boundary layer is ig-

nored and the linearized Navier-Stokes equations are reduced to ordinary differential

equations (ODE) by assuming a wave-like disturbance of the form

¢(x,y, z,t) ~ ¢(y)e (1)

where x, y, and z are the streamwise, wall-normal, and spanwise coordinates, respec-

tively; a and _ are the corresponding wave numbers, w is the disturbance frequency

and • represents the disturbance shape function. The linear ODE's along with the

homogeneous boundary conditions constitute an eigenvalue problem of the form

- a(w, _) (2)

which can be solved by standard eigenvalue techniques. The imaginary part of

c_ gives the disturbance growth rate and a small disturbance is expected to grow

provided oLi < 0. For a given flow, this eigenvalue approach can be applied "locally"

at various locations along the body in order to obtain an idea about overall growth

of disturbances and to correlate with transition location using empirical methods

such as the e N method.

The effect of non-parallel flow on boundary-layer instability has been studied

by Gaster (1974), Saric and Nayfeh (1975), Gaponov (1981), and E1-Hady (1991).

In the multiple-scales method used by the latter three authors, the disturbances

are decomposed into a slowly-varying shape function and a rapidly-oscillating wave

part. Both parts are represented as functions of a fast-scale variable (x) and a slow-

scale variable (_ = ex, with e = 1/R). With these assumptions the governing PDE's

are reduced to a set of ODE's by neglecting terms of order equal to or higher than

e2. In conjunction with the solvability condition, the analysis yields non-parallel

corrections to the eigenvalues computed by the quasi-parallel theory. Just like the

traditional linear theory, the multiple-scales approach can only be applied locally

for a given problem.

Apart from the "local" methods described above, the evolution of disturbances

in a given flowfield may also be computed numerically by solving the governing

partial differential equations (PDE's) without resorting to the eigenvalue approach.

The effect of boundary-layer growth and other history effects associated with ini-

tial conditions and variation in wall temperature, for instance, can be properly

accounted for. This was done for the GSrtler vortex problem by Hall (1983) and



Spall and Malik (1989). Denier et al. (1991) solved the "receptivity" problem to
provide the inflow conditions for the PDE's and were able to show how GSrtler
vortex structure developsfrom a discrete roughnesssite.

The governing PDE's for the GSrtler problem are parabolic and thus the solu-
tion can be obtained by direct marching provided the initial conditions are known.
However, the governing equations for Tollmien-Schlichting (TS) and inviscid type
disturbances are elliptic and their solution cannot be obtained by simple march-
ing methods. In addition, the numerical solution of these PDE's requires proper
outflow boundary conditions which is a nontrivial task. However,we note that for
boundary-layer type flowswhich areof interest here, the equation set is only weakly
elliptic along the dominant flow direction. Therefore, with appropriate simplifica-
tions, one could "parabolize" these stability equations and avoid the difficulties
associatedwith the downstreamboundary conditions.

From a physical view point, the streamwiseellipticity arisesfrom the upstream
propagation of acoustic waves and the strea.mwiseviscous diffusion. To render
the stability equations parabolic, one must devise a way to suppress, but without

compromising the essential physics, this upstream propagation. One way to derive

the parabolized stability equations (PSE) is to borrow ideas from the multiple-scales

approach and decompose the disturbance into a rapidly-varying wave-like part and a

slowly-varying shape function. The ellipticity is retained for the wave part while the

parabo!ization is applied to the shape function. The resulting PSE can be solved by

marching along the streamwise direction. The technique can be used to study both

the linear and nonlinear evolution of convective disturbances in growing boundary

layers. Global or absolute instabilities can not be studied by this approach. This

parabolizing procedure has been used recently by Bertolotti et a1.(1992) for Blasius
flOW.

The objective of this research is to study compressible boundary-layer stability

and transition. We employ parabolized stability equations for linear and nonlin-

ear development of disturbances in a compressible boundary layer. The nonlinear

calculations are carried all the way to the transition stage for supersonic flows. In

section II, we formulate the problem while the numerical procedure used to solve

the governing equations are given in section III. The results and conclusions are

presented in section IV and V, respectively.

II. Problem Formulation

The evolution of disturbances in compressible boundary layers is governed by

the compressible Navier-Stokes equations

Op
_+V.(pV)=0



.a¢
pl-_--+ (¢. v)¢] = -vp+ v[_(v •_)] + v. [_(v,2 + vet)] (3)

p%[_ Op+ (¢.V)T]= v.(kVT)+ b7+ (ifV);+ +

where V is the velocity vector, p the density, p the pressure, T the temperature, cp

the specific heat, k the thermal conductivity, # the first coefficient of viscosity, and

A the second coefficient of viscosity. The viscous dissipation function is given as

j_ --+ •+ = _(v. ¢)2 + _[vv + veT] 2

The equation of state is given by the perfect gas relation

p = p_,T

and the steady state solution of the basic flow can be derived by invoking the

boundary-layer assumption.

In this research, we formulate the compressible stability problem in Cartesian

coordinates for the flat-plate geometry, although the theory itself can be easily

extended to axisymmetric bodies and infinite swept-wing flows. The Cartesian

coordinates are denoted by x, y, and z to represent the streamwise, wall-normal,

and spanwise directions, respectively. All the lengths are scaled by a reference length

I, velocity by Ue, density by Pc, pressure by peu2e, time by I/ue, and other variables

by the corresponding boundary-layer edge values. The basic flow is perturbed by

fluctuations in the flow, i.e. the total field can be decomposed into a mean value

(boundary-layer solution) and a perturbation quantity

u = fL + u', v = _ + v', w = ff, + w'

p = p-l- p', p = p + p', T = '2' + T'

#=#+#', .X=X+.X', k=[_+k'.

(4)

Substituting Eq.(4) into the Navier-Stokes equations given by Eq. (3) and sub-

tracting from the governing equations corresponding to the steady mean flow, and

using the equation of state, we obtain the governing equations for the disturbances

as

0¢ __ 0¢P_-+A +Bb-_y
0¢ 02¢ 0_¢ 02¢

+ C--_z + De =V_= Ox-----$ + V,y _OxOy + Vyy Oy 2

v o2+ o2+ vo +
+ _ OxOz + Vyz-- +OyOz _ Oz2

(5)

where ¢ contains the disturbance vector and is defined as

+ = (p', u', v', w', T') T.



Matrices F, A, B, C, D, V**, V,v, Vvv, Vxz, Vvz, and Vzz are Jacobians of the

corresponding total flux vectors and are composed of a linear part with only mean

flow quantities (denoted by superscripts l) and a nonlinear part which contains

perturbation quantities (denoted by superscripts n): F = F l + F n, A = A ! + A",

etc. We note here that matrices F, A, B, C, D have contributions from both inviscid

and viscous terms, and thus contain terms of order one and of order l/R0 (R0 is

the reference Reynolds number Ro = u_l/u¢); while matrices V**, V,z, Vxv, V_y,

V,,, Vyz, and Vzz are solely due to viscous diffusion and are of order 1/Ro.
To facilitate our discussion on the relation between linear and nonlinear dis-

turbances, we rearrange Eq. (5) in the following form

toe toe B_O¢ _0¢ Vl 02¢ Vl 02¢
F -_ + A Ox + _ + C Oz + Die - x_ Oz---5 _v OzOy

- Y_ 02¢ _ 02¢
axaz y;za-_z

Vl 02¢
yy Oy2

vL °2¢ = F"
Oz 2

(6)
where the left hand side contains only linear operators operating on the disturbance

vector and the right-hand-side forcing vector F n is due to nonlinear interaction and

includes all nonlinear terms associated with the disturbances. The right hand side

is given as

F- = - r oa¢ A" a2 - B_a2 _ c - 0¢
Ot Ox Oy Oz

02¢ V" 02¢ .02¢
- D"¢ + Y:_ az---_ + ,v OxO----y+ v_v oy 2

(7)

+ V" 02¢ --02¢ " a_¢•"axa--;+ O az+ v;,az 
In the incompressible limit, F" contains quadratic nonlinearities; while, for com-

pressible flows, cubic and higher-order nonlinearities are present. For small distur-

bances, F" can be neglected and thus Eq. (6) reduces to the linearized Navier-Stokes

equations
l0¢ t 0¢ l 0¢ ,0¢

F _-+d_xx+B _-y+C _z+D'¢

_V_ 02¢ z 0_¢ _ 0_¢ y I a2¢
-Sfix_v;v oxOv v;_ oy2 _ OxOz (8)

_v_; 02¢ vtO2¢=
yz _ " zz Oz 2 O.

The governing PDE's of the disturbances, Equation (6), is hyperbolic in time

for the convection terms (inviscid part). When we consider only the spatial deriva-

tives, Equation (6) is elliptic in the streamwise direction due to two reasons. First,

the streamwise viscous term V** allows any disturbances to be diffused upstream.

Second, and more importantly, the convection term in the streamwise direction

4



makes the upstream propagation of acoustic waves possible. The latter can be bet-

ter understood by considering the linearized version of the inviscid equations and

using the method of characteristics (MOC) theory. Since the inviscid part of Eq.

(8) is hyperbolic in time, the corresponding slopes of characteristic lines in the x - t

plane (which determine the direction of propagation) can be found by solving the

following eigenvalue equation

]A l - _cFtl = 0.

Negative eigenvalues imply the wave is propagating from downstream to upstream

and vice versa. The eigenvalues of the above equation are

)_c = U,U,_,_+ C,_ --C

where c is the speed of sound. For boundary-layer flows of interest in this study, the

first four eigenvalues are always positive, while the last eigenvalue (fi - c) can be

either negative or positive depending upon the local Mach number (.h_I_ = fL/c). For

subsonic flows, this quantity is negative throughout the whole flowfield, therefore,

the equation set (8), and thus (6), is elliptic. For supersonic flows, the ellipticity

only arises inside the subsonic layer adjacent to the wall.

Based upon the above discussion, one way to "parabolize" the PDE's given by

Eq. (6) and make the marching solution feasible is to neglect the viscous diffusion

terms along the streamwise direction and prohibit the upstream wave propagation

either by dropping the left-running characteristics (associated with the eigenvalue

-c) (Chang and Merkle, 1989) or suppressing some part of the streamwise pressure

gradient, as it is done in the Parabolized Navier-Stokes (PNS) approach (Vigneron

et al., 1978). For the stability equations, the upstream wave propagation can be

suppressed by either dropping the characteristic equation associated with the eigen-

value fi - c or multiplying the streamwise pressure disturbance gradient Op'/i)x by

a parameter f_ given by

g_= 7M_
1 + (7- 1)M '

=1, M_ >_ 1

M_<I
(9)

where 7 is the ratio of specific heats. These parabolizing procedures are quite

effective for the PNS approach and yield solutions which compare favorably with

those obtained by the full Navier-Stokes equations provided a large portion of the

flow is supersonic and only steady state solutions are of interest (Vigneron eL al.,

1978; Rubin, 1981). The advantage, of course, is the significant reduction in the

computational cost due to the marching solution.

For compressible stability problems, the disturbances are essentially unsteady

waves propagating across the whole boundary layer and the amplitudes of these

5



waves reach their maxima near the critical layer located between the wall and the

boundary-layer edge. These instability waves undergo a "fast oscillation" (phase

change) as they evolve along the flow direction. Direct application of the parab-

olizing procedure used in the PNS approach for mean flow computations to our

governing stability equations would not capture the flow physics due to the sup-

pression of the wave propagation along the left-running characteristics. Therefore,

an alternative procedure must be devised.

Linear PSE

As mentioned previously, one way to "parabolize" the governing PDE's is to

first decompose the disturbances into a fast-oscillatory wave part and a slowly-

varying shape function. We keep the ellipticity for the wave part while parabolizing

the governing equation for the shape function. Following the lead of the non-parallel

linear stability theory, we assume that the disturbance vector ¢ for an instability

wave with a frequency w and a spanwise wave number fl (assume the wave is periodic

in both the temporal and spanwise directions) can be expressed as

i(f" o(_)d_+#z-_O
¢(x,y,z,0 = _(x,y)e J-0 (10)

where _ is the fast-scale variable, a(_) is the corresponding streamwise wave number

and _ is the "shape function" vector given by

v = (11)

As compared to Eq. (1), the shape function _ is now a function of both x and y

due to the growth of the boundary layer and the wave number a is a function of x

to account for the growing boundary layer. For simplicity, we now restrict ourselves

to the linear case, i.e., only a single disturbance mode (w, fl) is considered and the

nonlinear effect will be included later on. Substituting Eq. '(10) into the linear

stability equation (8), we have the following equation for the shape function

D@ + A O@ _O'_ = v, 02@ 02@ V' 0=@ (12)

where the vectors D,/i, and/} are defined by

L) = -iwF I + D z + iaA t + iflC !

- + + v;,
]t = A t - 2iaW. - iflV:.

7_ B' " ' " '= - -,#V;,.soLV;y
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In the quasi-parallel linear theory where "normal-mode" analysis is employed,

the shape function • is assumed to be a function of y only (d@/dx = 0); therefore,

Equation (12) reduces to the following system of ODE's

Log =0 (13)

where the operator L0 is given by

d

Lo=b+B -

and the elements .of matrices /), /_ and V_ are evaluated by assuming parallel

mean flows (_ = 0 and da/dx = 0). The above ODE's in conjunction with homoge-

neous boundary conditions then constitute an eigenvalue problem described by the

dispersion relation given in Eq. (2).

Unlike the normal-mode analysis described above, the decomposition (10) ex-

hibits some extent of non-uniqueness between the distribution of the wave part and

the shape function part. In the PSE approach, we choose a complex wave num-

ber a and construct a decomposition such that the change of shape function

along the streamwise direction x is of order 1/Ro and the second derivative of

(c3262/0x 2) is negligible. With this assumption and after neglecting all terms of

O(1/R2), Equation (12) reduces to

+ = (14)

Equation (14) describes the evolution of the shape function • and is "nearly"

parabolic in the sense that second derivatives in x are absent and the elliptic effect

associated with the wave part is absorbed in matrices/), .4 and/_. For instance,

the disturbance pressure gradient Op'/Ox, which is responsible for the upstream

influence, can be written as

Exx

The contribution of the wave part (ia/_) is absorbed in the source term/9q2 and does

not contribute to the upstream influence of the governing equations of the shape

functions, Eq. (14). However, the pressure gradient shape function c3fi/Ox associ-

ated with the left-running characteristic (for subsonic flows only) is still present in

the x derivative term. The existence of this term allows upstream influence in Eq.

(14). For stationary G6rtler vortex problem; a -- O and O_/Ox drops out, Eq. (14)

reduces to the parabolic equations solved by Spall and Malik (1989).

For supersonic boundary layers, a large portion portion of the flow possesses

only downstream characteristics, our numerical results have shown that with a

7



properly chosen value of a (see discussion below) most of the upstream influence

is accounted for in ia_ and the elliptic effect associated with the pressure gradient

shape function, OHOx , is negligible. To make Eq. (14) truly parabolic and enable

a stable marching procedure for subsonic flows, we multiply O_/Ox by a constant

f_ defined in (9) (in the incompressible limit, this is equivalent to setting O[ffOx to

zero). While, this is formally true only in special cases (e.g. GSrtler vortex problem),

the approximation yields solutions which compare very well with accurate results

from full Navier-Stokes equations (Joslin et al., 1992). This is because most of the

ellipticity is captured in the ia[_ term.

For incompressible flows, one can use the vorticity-streamfunction formulation

for two-dimensional flows or use other formulations derived by eliminating the pres-

sure from the momentum equations, as is done by Bertolotti et al. (1992). In these

approaches, neglecting second and higher streamwise derivatives of the dependent

variables inherently suppresses some part of the streamwise pressure gradient, and

consequently prohibits the upstream propagation of information.

_Ve now describe the strategy to update the streamwise wave number in or-

der to make the marching scheme well-posed. The evolution of shape functions is

monitored during the process of marching and a is updated by local iterations at a

given x according to the change in tI,. The updating procedure is described herein.

At a given location xl, we assume that the streamwise wave number is given by al

and the total disturbance in the vicinity of xl can be expressed as

i( f _ a_d_+_z-_O
(15)

The change of the shape function _ can be approximated by the following Taylor

series expansion truncated to the first order

y) = + (= - x,) + ...

where ql is the shape function at x = xl. To an accuracy of O(x - Xl), the above

equation can be further expressed as

= ,, ,. (16)

Substituting (16) into (15), we have the "effective" wave number in the vicinity of

xl given by
1 dql

a = al - i----. (17)
_1 dx

The real part of this effective wave number represents the phase change of the

disturbance while the imaginary part depicts the growth rate, both corresponding

to the quantity _1 chosen. A disturbance (_1) is unstable if the imaginary part

8



is less than zero. The updating procedure of a is repeated by using (17) until the

change in a is smaller than a prescribed tolerance (typically 10-12).

Since the shape function vector @ is a function of y and contains five depen-

dent variables (_,fi, etc.), the updating procedure above is equivalent to choosing

a normalization of the disturbance vector such that d_l/dx is zero at a particular

y location. Accordingly, the value of c_ computed by (17) will depend on the y

coordinate and the selected dependent variable 91. In this study, we have used the

shape function fi (or t for compressible flows) at various y locations or the energy

integral (E = fo P( t_2 + z32 + @2)dy), which is independent of the y coordinate,

to update the wave number a and the resulting non-parallel growth rate (which

also depends on the dependent variable and y coordinate chosen to measure the

growth rate) appears to be very weakly dependent upon the normalization chosen

(see discussion in section IV).

The solution of (14) requires proper boundary conditions in the wall-normal

direction. We apply the homogeneous Dirichlet conditions

y=o (18)

at the wall and in the free-stream

fi =_3=z_ =T=0, y_oc; (19)

although, these can be easily replaced by other conditions such as the Rankine-

Hugoniot conditions at the shock (Chang et al., 1990) for supersonic flows. Non-

homogeneous boundary conditions can also be imposed.

Nonlinear PSE

In the linear PSE approach described above, the disturbance amplitude is as-

sumed to be infinitesimally small so that the nonlinear interaction of waves with dif-

ferent frequencies and spanwise wave numbers is neglected. When finite-amplitude

waves are present in the flow, the linear approach is no longer valid. For nonlinear

studies, we assume that the total disturbance is again periodic in time and in the

spanwise direction, thus, the total disturbance function ¢ can be expressed by the

following Fourier series

where c_._. and _mn are the Fourier components of the streamwise wave number

and shape function corresponding to the Fourier mode (rnw, n_8). The frequency

w and wave number fl are chosen such that the longest period and wave length

9



are 2rr/w and 2_r/fl in the temporal and spanwisedomains, respectively. For most
stability problemsof interest, it is sufficient to truncate (20) to only a finite number
of modes

¢= EM EN _mn(X, y)e i( f:o" _,.,. (e)ae+,Zz-,,,_t) (21)

rn=-M n=-N

where M and N are the total number of modes kept in the truncated Fourier series.

For all nonlinear results presented in this study, we apply both the temporal and

spanwise symmetry conditions whenever applicable, i.e., only one quarter of modes

(m ranging from 0 to M and n ranging from 0 to N) are computed in the marching

process.

We now substitute Eq. (21) into our nonlinear governing equation (6) and

perform harmonic balance (collect terms with the same spanwise wave number and

frequency) for both linear and nonlinear terms. The resulting governing equations

for the shape function of a single Fourier mode (m, n) become

bin. _.,. + -4m.--
Offd mn + b.,. 0¢2m. __

Oy
02 _ rnn

y_y ou-----v- + rm./,4m.

(22)

where matrices/9,,,,, Am,, and/},,,, are given by

b,,,,, = -imwF l + D I + ia,,,,A l + inflC l

dam. 2 I ,_m._V__m.)Y;_ +--(i dx

__2_2_rI
+nP vz,

flm. = A l- 2iam,Vt,, - inflVt, z

Bm. B t " i

and the quantity Am,, is

_rnn _ e 0

The nonlinear forcing function F.,. is the Fourier component of the total forcing

defined by Eq. (7) and can be evaluated by the Fourier series expansion of F n

M N

F"(x,y,z,t)= E E Fr_"(x'y)ei("/3z-m'_t)" (23)
m=-M n-----N

The Fourier decomposition of Eq. (23) can be done by using the Fast Fourier

Transform (FFT) of F", which is evaluated numerically in the physical space. In

10



equation (22), a parabolizing procedure similar to that used in the linear PSE has
been employedin order to obtain a marching solution.

As in the linear PSE, the determination of the wave number a,n, plays an

important role in maintaining numerical stability. The procedure described above

for computing a for linear disturbances can also be used for the determination of

am,. However, when all Fourier modes are nearly phase-locked (as is evident when

parametric resonance of secondary instability takes place, see e.g. Kachanov and

Levchenko (1984)), one may assume that the wave number is given as

where st is the real part of al0 and a,nn denotes the growth rate of the mode (rn, n).

Each mode can have a different imaginary part am,,, while the real part is updated

according to the ptiase change of the dominant fundamental mode. Additional

phase shifts in the harmonics are included in the evolution of the shape functions of

the harmonic waves; therefore, all Fourier modes are not necessarily phase-locked.

It needs to be pointed out that the "nearly" phase-locking assumption (since the

evolution of shape functions may shift the phase slightly) mentioned above is used

for convenience and is not necessary for the nonlinear analysis using PSE. In a

later section, we will provide an example of a nonlinear calculation where we let

the disturbances evolve with and without the phase-locking rule. Use of the phase-

locking rule, when applicable, saves computational cost.

The nonlinear PSE for a single Fourier mode, equation (22), is equivalent to

the linear PSE given in (14) with a frequency rnw and a spanwise wave number n_

with the addition of a forcing function. Since the forcing function acts as a "source

term" of the equation, the boundary conditions and solution procedure described

above for the linear PSE can be directly applied to the nonlinear system, except for

the modes with zero frequency (rn = 0). These zero frequency modes are denoted

as the mean flow correction (if n = 0) or longitudinal vortex modes (if n _ 0). For

these modes, as in GSrtler vortex problem, the pressure gradient O_/c3x drops out

making the equations fully parabolic.

The boundary conditions given in Eqs. (18) and (19) can be applied to the

longitudinal vortex mode without modification. For the mean flow correction, the

free-stream conditions are replaced by

_oo
_00 = - t500 = T00 = 0, y _ oc (24)

Oy

to account for the change of displacement thickness due to the correction of the

mean flow profile (6 + fi00) arising from nonlinear interactions. This Neumann

condition for the normal velocity allows the mean flow given by the boundary-layer

solution to adjust itself in order to assure mass balance.

11



III Numerical Procedure

In this paper, we only consider the compressible stability of two-dimensional

boundary-layer flow past a flat plate. The mean flow solution is obtained by solv-

ing the self-similar boundary layer equations. By using the Mangler-Levy-Lees

transformation, the boundary-layer equations are transformed into a set of ordi-

nary differential equations (ODE's). A fourth-order compact scheme is employed to

solve these ODE's. Details of the numerical procedures are given in Malik (1990b)

and will not be repeated here.

Numerical solution of the parabolized stability equations (14) or (22) requires

discretization in both x and y directions. Since the boundary layer grows in the

streamwise direction, we expect that the solution for the shape functions will also

grow. To ensure sufficient resolution as the disturbances evolve downstream, dis-

cretization in the wall-normal direction must be able to account for the growth of

the boundary layer. Instead of solving equations (14) and (22) in Cartesian coor-

dinates, we transform these equations to a generalized coordinate system defined

by

=
(25)

in order to facilitate numerical computations on a "growing mesh" or curved wall

geometries. After this transformation, Equation (14) becomes

where the coefficient matrices are given by

b=D

= +

_rll _ 2 I: r]y V;y.

2
V_y 0 '1_

J O_(-f )

The Jacobian of the transformation J is defined as

Equation (22) can be transformed in a similar fashion.

Using transformation (25), we map the computational grid into a uniform mesh

with constant increments in _ and rt coordinates. For most of our calculations, we

use a constant step size in x while the grid is clustered near the wall to resolve the

rapid change inside the boundary layer. For high Math number calculations, we also
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cluster the grid near the critical layer located near the boundary-layer edge. The

stretching along the V direction is based on the local length scale lz (4 = v_X/-_e-e)

which increases with the boundary-layer growth. The same grid distribution based

on V/4 is used for all x locations while l_ increases with x.

We use indices i and j to denote the grid index along the streamwise (x) and

wall-normal (V) directions, respectively. In the streamwise direction, we use the

second-order backward difference

a,I/

a_ - (3@i,j - 4_i-1,j + @i_2,j)/2A_

for all x locations, except for the starting plane where a first-order backward differ-

ence is employed. The resulting discretized equation for the i-th streamwise plane
is then

3 : /}0__0 - O2
[D + ___-_A + 0_7 - V'vT-_n2]i'J_i'J = (27)

@

_i_,_(4_i_1,_ - _,_2,i)/2A_

In the wall-normal direction, we employ a fourth-order accurate finite-difference

scheme. The two-point fourth-order scheme by Malik et al. (1982) is also used for

normal derivatives; however, it requires that the normal mean velocity 0 is non-zero

and hence is not generally applicable for all problems.

For the uniform mesh in the _ - r/plane, the normal derivatives in Eq. (26)

are discretized according to the following fourth-order central difference formulae:

O_ --ffffi,j+2 "_-8ffffi,j+l -- 8ffffi,j--1 -{- ffffi,j--2

= 12At/

02ff2 =(-@i,1+2 + 16@1,1+1 - 30_L/
0r] 2

+ 16@/,j-1 -- _i,j-2)/12irl 2.

For the grid point next to the boundary, the above five-point scheme is replaced

with the second-order scheme

= (kT_i,j..F1 -- _i,j_l)/2A_

Or/

02q

0772 ----- (kI/i,j+l -- 2qJi,j + _i,j-1)/2Ar/2.

At the boundary, five boundary conditions are needed for five dependent variables

in q. The no-slip and free-stream boundary conditions given in (18) and (19)

are used. In addition, we apply the discretized continuity equation as the fifth

boundary condition both at the wall and the free-stream. Substituting the above

13



normal derivatives into (27) for all interior points and coupling with the boundary
conditions result in a block penta-diagonal system of equations at each x location

with a block size of 5 × 5. This block matrix can be solved by the standard LU

decomposition method.

IV. Results and Discussion

To demonstrate the capability of the PSE approach, we perform both linear

and nonlinear calculations for. various Mach numbers. In the linear results, the

main focus will be on the non-parallel effect, and in the nonlinear regime, PSE

calculations are carried all the way to the early stage of transition.

In the following discussion, we define the growth rate in non-parallel boundary

layers according to Eq. (17), i.e., for any given flow variable ¢ ( for instance, #, fi,

etc.), the growth rate a is defined as

1 0¢

= + (28)

The second term on the right hand side of the above equation is a function of y;

therefore, the growth rate in a non-parallel boundary layer depends upon the dis-

tance normal to the wall. We note here that although Eqs. (17) and (28) are derived

based on the same concept, they have different physical meanings. Briefly, Eq. (17)

is used to normalize the disturbance vector and determine the wave number _. For

each normalization, corresponding to different _l chosen in (17), the growth rate

for any given variable at any y location is to be evaluated using Eq. (28). For the

results presented herein, we compute the growth rate at the corresponding loca-

tion where the fluctuation reaches its maximum value or based on the disturbance

kinetic energy integral,

where E is defined by

= +

i0 °
E = (fi2 + _)2 + _2)dy

for the incompressible limit and by

E=/0 °° f(fi2 + fi2 + dj2)dy

for general compressible flows. In supersonic wind tunnel experiments, the growth

rate is usually measured for the mass flow fluctuation. We define the mass flow

fluctuation as
I--

(pu)' = p u + flu'. (29)
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Linear PSE

As mentioned in the previous section, the streamwise wave number o_ depends

upon the variable k_l chosen and the y location where (17) is applied. To demon-

strate that the resulting non-parallel growth rate is very weakly dependent upon

various normalizations, we first perform calculations for a Mach 1.6 boundary layer

by using different dependent variables to update _. These variables include fi,

(evaluated at various y locations as shown in the figure) and the kinetic energy inte-

gral E defined above. Figure 1 shows the resulting imaginary part of the converged

value of a for the various norms. The results reveal that a strongly depends on

the norm chosen.-The corresponding effective growth rates apu, aT and fiE, eval-

uated by using (28) at their maximum locations (for apu and o"T only) are shown

in Fig. 2. It shows that the total growth rates depend on how they are measured

(for instance, fiT ancl aE are different); however, each non-parallel growth rate (e.g.

crpu) appears to be independent of the normalization procedure because results from

various norms collapse into one single curve. Similarly, although not shown here,

the non-parallel wave number, evaluated by

is also weakly dependent on the normalization. The above results indicate that

although different norms result in different values of a, the total growth rate (and

wave number) by accounting for the evolution of shape function in the streamwise

direction remains the same regardless of the norms. For the results presented herein,

we use the kinetic energy integral E in (17) to update a.

To verify the numerical algorithm, the first test case studied is an incom-

pressible flow case. The incompressible results were obtained by choosing a Mach

number of 10 -6 in our compressible formulation. Linear non-parallel results are

available for incompressible boundary layer flow by using local methods from many

authors(e.g., Gaster, 1974). The neutral points obtained from our PSE calcula-

tions agree very well with those from Gaster's (1974) non-parallel method. Figure

3 shows the computed variation of the growth rates (au, av and aE) with Reynolds

number (R = _) for a representative non-dimensional frequency (F = wR)

of 1.12 x 10 -4 . The growth rates from multiple-scales method are shown by symbols.

The results shown in Figure 3 reveal that the neutral curve near the upper branch is

shifted to higher Reynolds numbers due to non-parallel effect as was found by Gaster

(1974) and linear PSE results agree very well with those from the multiple-scales

approach.

The second test case was chosen to be the Mach 1.6 case studied by E1-Hady

(1991) using the multiple-scales approach. The frequency was fixed at 0.4 × 10 -4

and variable transport properties were used. Calculations were performed for both
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2-D and 3-D linear disturbances with an oblique wave angle of about 50 ° for the

latter. The growth rate of the mass flow fluctuations (defined in Eqs. (28) and

(29)) from our PSE calculations together with the multiple-scales results are plotted

along with the growth rates obtained by quasi-parallel linear stability theory in Fig.

4. Our PSE results agree quite well with those obtained from the multiple-scales

approach. The results also indicate that for the first mode disturbance at Mach

1.6, flow non-parallelism has more effect on three-dimensional disturbances than

on two-dimensional ones. Results obtained at higher Mach numbers also show a

noticeable non-parallel effect on the first-mode instability.

We now show some results for the Mach 4.5 fiat-plate flow, which is subject

to second-mode instability (Mack 1984). Calculations were performed for a dis-

turbance frequency of F = 1.2 × 10 -4 with different streamwise resolutions. We

used step sizes ranging anywhere from 64 steps per wavelength to only one step

per wavelength. The results for the second-mode growth rate based upon the to-

tal kinetic energy are plotted in Figure 5. There is essentially no difference in the

growth rate results when two or more steps per wavelength are used. The reason

why only two points per wavelength could yield such accurate growth rates lies in

the fact that most of the wave information is absorbed in the complex wavenumber

a. In contrast, direct numerical simulation (DNS) of Navier-Stokes equations would

require many more points per wavelength for comparable accuracy.

To further verify our linear results, we compare non-parallel evolution of a

second mode disturbance with a frequency of 2.2 × 10 -4 with DNS. In Fig. 6,

the maximum amplitudes of various flow quantities are plotted against Reynolds

numbers for both PSE and DNS. The PSE results obtained by using only 7 steps

per wave length agree very well with DNS results using 16 steps per wave length.

The PSE calculation took about 100 seconds CPU time while the DNS required

more than 40 hours on a Cray-YMP. Details of the comparison including nonlinear

disturbances and the spatial DNS algorithm are given in Pruett and Chang (1993).

Nonlinear PSE

a. Computation of a

In a previous section we mentioned that the wavenumber a for the harmonics

may be determined either by the phase-locking rule or by using Eq. (17). It is known

that the nonlinear wave interaction is dependent on the phase-difference between

various modes. Therefore, it is essential that nonlinear PSE approach must not

require phase-locking as a fundamental assumption; although, it may be used as a

convenience for problems where phase-locking happens anyway.

In order to demonstrate that phase-locking is not a basic assumption for non-

linear PSE computations, the following test has been performed. Nonlinear calcula-

tions have been done for a flat-plate boundary layer in the incompressible limit. A

two-dimensional wave with a frequency F = .86 x 10 -4 and an initial amplitude of
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.25% at R = 400 is introduced in the boundary layer and the evolution of this wave

along with its various harmonics is monitored. Calculations were performed in two

different ways. First, the wavenumber a was computed for the fundamental wave

according to Eq. (17) and the phase-locking rule was used for all the harmonics. In

the second set of calculations, wavenumbers for the fundamental and all the harmon-

ics were computed independently by using Eq. (17). The computed results for the

amplitude of u velocity (fundamental, its four harmonics and meanflow correction)

are presented in Fig. 7(a). It can be seen that only very minor differences appear

between the two sets of calculations and these also tend to disappear as the calcu-

lations are marched away from the inflow boundary. The second set of calculations

takes about 50% more computer time due to the iterations involved in determining

a for the wave harmonics. Hence, it is expedient to use the phase-locking rule for

problems where this may be the outcome in any case.

In Fig. 7(b), the same nonlinear PSE results are compared with the spatial

incompressible DNS results for fundamental, first harmonic and the mean flow dis-

tortion modes. Both PSE and DNS start with the same initial conditions, i.e., a fun-

damental disturbance (1,0) at R = 400 and all harmonic waves including the mean

flow distortion are generated through nonlinear interactions. The good agreement

between DNS and nonlinear PSE indicates that the parabolizing approximation in

the PSE approach does not introduce any severe error and all detailed nonlinear

features are properly captured. Details of the comparison including disturbance

profiles can be found in Joslin et al. (1992).

b. Second-Mode Instability at Mach 4.5

To verify the nonlinear PSE algorithm, we choose the nonlinear second mode

simulation at Mach 4.5 investigated by Erlebacher and Hussaini (1990) using the

temporal DNS approach. As in the temporal DNS approach, we assume that the

mean flow is parallel and study the spatial evolution of disturbances in the presence

of nonlinear interactions. The initial conditions were provided by the eigensolution

from the linear theory at R = 781 and four Fourier modes (M = 3) were kept in the

truncated series. In our PSE calculation, the disturbance is assumed to be periodic

in time and the nonlinear evolution is carried downstream in x as opposed to the

temporal DNS approach where the disturbance is periodic in x and integration is

carried in time. It was found in Erlebacher and Hussaini (1990) that due to non-

linear effect, the growth rate of the fundamental disturbance strongly depends on

y and there exists a sharp decrease in the local growth rate near the critical layer.

The growth rates based on ul0 from our PSE results are shown in Figure 8(a) for

different x locations. The growth rate is initially uniform at the starting location

(x = 0)_). As the disturbances are evolving downstream, nonlinear effects observed

in Erlebacher and Hussaini (1990) are evident in the present spatial calculations.

For comparison, their temporal DNS results are shown in Figure 8(b) at different

time levels represented as multiples of the temporal period r. Figure 9 depicts the

amplitudes of the density fluctuation of the first harmonic for both PSE calcula-
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tions and the DNS results. The DNS results in Figure 9 are re-scaled to facilitate

comparison. Qualitatively, all nonlinear features observed in DNS, including the

kink near the boundary-layer edge, are properly resolved in our PSE results.

c. Subharmonic and Fundamental Resonance at Mach 1.6

Numerical simulation of incompressible flows have shown that the rapid growth

of three-dimensional secondary disturbances is followed by breakdown to turbulence.

Secondary instability is triggered when the primary disturbances reach sufficiently

high amplitudes. To show the capability of the PSE approach in simulating transi-

tion onset, we also perform nonlinear calculations to study the secondary instability

mechanism. We carry our calculations all the way to transition for both K-type (fun-

damental) and H-type (subharmonic) breakdown. We choose Mach 1.6 flat plate

flow with a primary disturbance frequency of 0.5 × 10 -4. The same flow conditions

were also used by Thumm et al. (1989) in their spatial Navier-Stokes simulations

of a compressible boundary layer.

We first perform a series of calculations to determine the amplitude of the

primary disturbance which will trigger the secondary instability. The PSE calcu-

lation is initiated at a Reynolds number R of 460 where we impose a primary 2-D

wave (mode (2, 0)) obtained by a local eigenvalue calculation and two subharmonic

waves ((1,1) and (1,-1) modes) by using the compressible secondary instability

theory (Ng and Erlebacher, 1992) and all the remaining harmonics are assumed to

have zero amplitudes. Initial amplitudes of the primary disturbances are set to be

3%, 1.1% and 0.6% at the inflow plane which corresponds to the 5%, 2% and 1%

(the maximum amplitudes near the vibrating ribbon) cases given in Thumm et al.

(1989). The initial amplitudes of the subharmonic waves are fixed at 0.019% for

all three cases. The spanwise wave number of the subharmonic mode is fixed at

_/R = 0.53 × 10 -4 which corresponds to an oblique wave angle of 45 °. Six temporal

Fourier modes and three spanwise modes (M = 5 and N = 2) are kept in the Fourier

series. The evolution of both primary and subharmonic disturbances are shown in

Figure 10. Qualitatively, our results agree with those of Thumm et al.(1989). Any

quantitative differences are due to different initial conditions. We find that a 1.1%

initial amplitude (2% case in Thumm et al. (1989)) for the primary mode is enough

to trigger the secondary growth; however, the onset of secondary growth for this

case occurs at R = 800 where the primary wave is about to decay. We continue

the PSE calculations beyond R = 1050 for this case and find that the secondary

disturbance eventually saturates and the flow does not reach the transitional stage.

To carry the 3% case to the transition stage, we made another calculation with

more Fourier modes (M = 7 and N = 4) and the maximum velocity amplitudes of

some representative modes are given in Figure 11. Besides the fundamental mode

(2,0) and the subharmonic mode (1, 1), higher harmonics in time and spanwise

domain are also excited due to nonlinear interaction. Initially, the (4, 0) mode gains

energy from self-interaction of the (2, 0) mode and the interaction of (2, 0) and (1, 1)

produces the (3, 1) mode. When the subharmonic mode grows due to the onset of
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secondary instability, its harmonic (2, 2) also grows at slightly higher rate. The

streamwise vortex mode (0, 2) arises due to the interaction of (1, 1) mode and its

complex conjugate (-1, 1). As all these modes continue to grow, more and more

modes are excited. The energy cascade exhibits a staggered pattern. For instance,

among the two-dimensional modes, only (2, 0), (4, 0), (6, 0), etc. gain energy; while

for 1/3 modes, only (1, 1), (3, 1), (5, 1), etc. are excited. The remaining modes (e.g.

(1, 0), (3, 0), (0, 1), (2, 1) etc.) remain unexcited throughout the calculation. The

above staggered energy cascade is typical for subharmonic secondary instability.

The secondary amplitude overtakes the primary at about R = 980 and reaches an

equilibrium state around R = 1100. At this stage, many harmonic waves reach

fairly high amplitudes as the flow heads for transition. We plot the time sequence

of spanwise vortieity contours at the peak and valley planes (corresponding to the

maximum and minimum disturbance rms amplitudes, respectively) in Figures 12(a)

and 12(b). As can be seen, the vorticity pattern doubles its wavelength for x >

2200 (x is normalized w.r.t, the boundary layer length scale l at the initial plane)

indicating the presence of high-amplltude subharmonic wave. It is also evident

that the vortex roll-up results in a distinct kink in the shear layer. Towards the

end of the computation, regions of intense vortieity near the wall begin to appear

indicating that flow is heading for breakdown. Figure 13 shows the streamwise

velocity contours in the x-z plane for a wall normal distance of y = 2.3, where the

TS wave reaches its maxin-mm according to the linear solution. The flow is initially

two-dimensional and three-dimensional effect becomes important for x > 1800. For

x > 2000, a staggered contour pattern is evident. This pattern is associated with

the lambda vortex structure, a distinct characteristic of subharmonic breakdown,

as observed in many incompressible experiments (e.g. Corke and Mangano (1989)).

Nonlinear PSE calculations are also performed for the same Mach 1.6 case but

for a fundamental-type secondary resonance. The initial amplitude of the primary

wave is again 3% and that of the secondary is taken to be 0.005% to minimize

nonlinear interaction close to the starting location. The spanwise wave number is

/3/R = 1.52 x 10 -4 (oblique wave angle of 60 ° for the secondary wave) and the pri-

mary wave frequency is again 0.5 x 10 -4. The initial conditions for our marching cal-

culation consist of a 2-D primary wave (mode (1,0)), two oblique fundamental-type

secondary disturbances (mode (1,1), (1,-1)) and the longitudinal vortex (mode

(0, 1)). The same number of Fourier modes as in the subharmonic case is used.

Nonlinear evolution of the maximum rms amplitude of u' is shown in Figure 14.

Initially, the dominant modes are (1,0), (1, 1), (0, 1) and (2,0) (the first harmonic of

the fundamental 2D mode). Unlike the subharmonic case, all harmonic waves (both

odd and even modes) gain energy directly from nonlinear interaction. Among them,

the (2,1) (due to (1,0) and (1,1)) and (1,2) (due to (0,1) and (1,1)) modes are

more noticeable. For Reynolds numbers beyond 870, the spectrum is rapidly filled

with high-amplitude disturbances and the flow is heading towards transition. As

compared to the subharmonic breakdown, transition location shifts upstream due
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to the larger growth rate of the secondary disturbance as a consequence of higher

oblique wave angle.

The time sequence of spanwise vorticity contours over a period of the primary

wave is shown in Figures 15(a) and 15(b) for the peak and valley planes, respec-

tively. In contrast to the subharmonic breakdoown, the wave length remains the

same throughout the whole computational domain. One important characteristic of

the K-type breakdown is the appearance of aligned lambda vortices. This is better

visualized in the streamwise velocity contours shown in Figure 16 for x > 1300.

Similar to that observed in incompressible simulations of Zang and Krist (1989),

regions of intense shear begin to appear near the end of the computational domain

in Figures 15(a) and 15(b). This indicates that flow has just entered the transitional

stage. It is confirmed by plotting the average wall shear in Figure 17. The com-

puted wall shear is slightly above the laminar value for most of the computational

domain. Only towards the end, wall shear significantly departs from the laminar

value indicating the onset of transition. In this way, PSE provides the prediction

of boundary-layer transition for the imposed initial conditions. The PSE wall shear

lies above the laminar value right from the beginning because of the relatively high

amplitude of the 2-D primary disturbance needed for transition in supersonic flow.

Since most amplified waves in supersonic flow are not two-dimensional, oblique

primary modes may lead to transition for lower initial amplitudes. In order to

carry the calculations further into transitional regime, more spanwise and temporal

resolution will be required. It remains to be seen how far PSE can proceed into

the transitional zone. The computational time used for the results presented in

Figures 14-17 was 15 minutes on a Cray-YMP machine. Similar results from full

compressible Navier-Stokes equations would require 0(50) hours.

V. Conclusions

Linear and nonlinear compressible boundary-layer stability is studied by using

the PSE approach. Several issues concerning the characteristics of the paraboliza-

tion and the updating of the streamwise wave number are also discussed. The

governing equations are solved by using second-order backward differences for the

streamwise derivatives while the wall-normal direction is discretized by a fourth-

order accurate finite-difference scheme.

Non-parallel flow effects have been studied for linear disturbances. For oblique

waves of the first mode type, the departure from the parallel results is more pro-

nounced as compared to that for the two-dimensional waves. Our linear results are

in good agreement with those from the multiple-scales approach, as well as those

from full Navier-Stokes equations.

Nonlinear PSE calculations are carried all the way to the early stage of tran-

sition for a Mach 1.6 flow. Both the subharmonic and fundamental types of break-
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down are studied by the current PSE approach. Qualitatively, these breakdown

processes are similar to the ones in incompressible boundary layers, except that

high amplitudes of the 2-D primary wave are required. The promising results of

our PSE calculations show that this new approach is a powerful tool for the study

of boundary-layer stability and transition prediction. The parabolized form of the

governing equations allow the numerical solution to be obtained in a computational

time which is orders of magnitude lower than that required for direct simulation of

Navier-Stokes equations.
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Figure 4. Effect of non-parallel mean flows for both 2-D and 3-D disturbances of

a Mach 1.6 flow at F = 0.4 x 10 -4. (Solid lines are from parallel theory, dashed

lines are from linear PSE calculations and results from E1-Hady (1991) using the

multiple-scales approach are shown by symbols).
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20 F Mach 1.6 Subharmonic (peak plane) I
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Figure 12. Time sequence of spanwise vorticity contours for the Mach 1.6 subhar-

monic breakdown (z and fl are streamwise and wall-normal coordinates normalized

by the boundary-layer length scale at/? = 460): (a) Peak plane, (b) Valley plane.

:)6



20 Mach 1.6 Subharmonic (valley plane) I
15

5 O0

ylO
5

o )o

20

I._

I(

5

5 O0

._()

I(

5

°s o

15

ylO

2O

15

ylO

20

5 0

15

ylO
5

)0

20

15

5 O0

Fig. 12 (b)

37



C

o_j-O

.__0cO
c- _-
0 _

E o
0

c- 0
_Q

09"_
_o

I I

A A A A

u

O
O
u_

O
O
O
CJ

O
_ O

u')
T--"

O
, , , t O

O
O ,--

I I I i I ,_ ,,,,,,,,'

O O
O O
O i.O
31""

N

X

..o

_0

c,l

II

c_

I
N

t_

o

o0

.,.._

o

0

38



0

II
I1

t--

0
"0

03

c-

E

c-

II

tO

t-
(.)

0 0 0

v

\\
"\. \

\\\\
\',

\ \ \
\ \
\ \
\ \
\ \
\ \

\ I
\ /
i /

!/
jl
il

0 0

a_

0

o _00 I ,.o

o _×_

or,- _80

r,.. "_

0 _'_ _

"-5 x'_

o _) _ ,._
0 ,-_

o _

o
m _ m

0

39



20 IF Mach 1.6 Fundamental (peak plane) I
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Figure 15. Time sequence of spanwise vorticity contours for the Mach 1.6 funda-

mental breakdown: (a) Peak plane, (b) Valley plane.

40



20

15

ylO
5

0
5()0

2O

15

yl 0
5

0
5 _0

20

15

ylO
5

0
5()0

20

15

ylO
5

0
5()0

20

15

yl 0
5

0
5 _0

Mach 1.6 Fundamental (valley plane)
t=O .0

7_0 1 x 1 1 1

t=0.2

7_;0 1 x 1 1 1

t=0.4

7!;0 x iO 1

t=0.6

7!i0 1 x 1 1

t=0.8

7_;0 1 x 1

Fig. 15(b)

41



t'_ Or)

f.-

i
0
0
U')

-- . . =

C_ ::::)

i i I ,.'i i I I I I I

0 0
U')

I i I

0
L_

N

X

II

I

0,=.l

r_

0

0

..=4

o

°,.=,

42
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Figure 17. Wall shear of un-perturbed (laminar) and perturbed (PSE) flows versus

Reynolds numbers for the fundamental breakdown shown in Figures 11 and 12.
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